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A four-step exponentially fitted method for the
numerical solution of the Schrödinger equation
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In this paper, we present an exponentially fitted four-step method for the numeri-
cal solution of the radial Schrödinger equation. More specifically we present a method
that integrates exactly the functions {exp (±w x) , x {exp (±w x)}. We illustrated the
efficiency of our newly produced scheme against well known methods, with excellent
results. The numerical results showed that our method is considerably more efficient
compared to well known methods used for the numerical solution of resonance prob-
lem of the radial Schrödinger equation.
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1. Introduction

The radial Schrödinger equation can be written as:

y′′(r) = [l(l + 1)/r2 + V (r) − k2]y(r). (1)

The above boundary value problem occurs frequently in theoretical physics
and chemistry, material sciences, quantum mechanics and quantum chemistry,
electronics etc (see, e.g. [1–4]).

We give some definitions for (1):

• The function W (r) = l(l + 1)/r2 + V (r) is called the effective potential.
This satisfies W (r) → 0 as r → ∞.

• The quantity k2 is a real number denoting the energy.

• The quantity l is a given integer representing angular momentum.

• The quantity V is a given function which denotes the potential.
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• The boundary conditions are:

y(0) = 0 (2)

and a second boundary condition, for large values of r , determined by
physical considerations.

The last decades a lot of research has been done on the development of
numerical methods for the numerical solution of the Schrödinger equation. The
aim of this research is the development of fast and reliable methods for the solu-
tion of the Schrödinger equation (see, e.g. [5–62]).

The methods for the numerical solution of the Schrödinger equation can be
divided into two main categories:

1. Methods with constant coefficients;

2. Methods with coefficients dependent on the frequency of the problem.1

In this paper, we will investigate methods of the second category. We will inves-
tigate the exponentially-fitted methods. We note that recently Ixaru and Vanden
Berghe [45] have published a very interesting book on exponential fitting. More
specifically we will obtain an exponentially fitted method of sixth algebraic order
for the numerical solution of the radial Schrödinger equation. We apply the new
obtained method to the resonance problem of the radial Schrödinger equation.
The above application shows the efficiency of the new obtained method.

2. The new trigonometrically fitted four-step method

2.1. Construction of the new method

We introduce the following family of methods to integrate y′′ = f (x) y(x):

yn+2 − 2 yn+1 + 2 a yn − 2 yn−1 + yn−2

= h2 [
b0

(
y′′

n+2 + y′′
n−2

) + b1
(
y′′

n+1 + y′′
n−1

) + b2 y′′
n

]
. (3)

In order the above method (3) to be exact for the functions

{exp(±I v x)}, (4)

where I = √−1, the following equation must hold:

2 cos(2 v h) − 4 cos(v h) + 2 a = − 2 h2 v2 cos(2 v h) b0

− 2 h2 v2 b1 cos(v h) − h2 v2 b2. (5)

1In the case of the radial Schrödinger equation the frequency of the problem is equal to:√
|l(l + 1)/r2 + V (r) − k2|.
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In order the above method (3) to be exact for the functions

{x exp(±I v x)}, (6)

where I = √−1, the following system of equations must hold:

h2 v2 b2 x + 2 h2 v2 b0 x cosh(2 v h)

+4 x cosh(v h) − 4 cos(v h) x + 2 x cos(2 v h)

− 2 x cosh(2 v h) + 2 h2 v2 b1 cosh(v h) x

= −h2 v2 b2 x − 2 h2 v2 b0 x cos(2 v h) − 2 h2 v2 b1 cos(v h) x (7)

−4 h sin(v h) + 4 h sin(2 v h) = −4 h3 v2 b0 sin(2 v h)

+4 h2 v cos(2 v h) b0 − 2 h3 v2 b1 sin(v h)

+ 4 h2 v b1 cos(v h) + 2 h2 v b2. (8)

We apply the coefficients founded from the solution of the system of equa-
tions (5)–(8) to the method (3) and we define the local truncation error expand-
ing (LTE) the appropriate terms in Taylor series expansions. We find the follow-
ing expression of the LTE:

LT E = h6
(13

60
v4 q(2)

n − 13
60

v2 q(4)
n + 13

60
v6 qn + 1

4
v2 q(4)

n b1

−1
4

v6 qn b1 − 13
60

q(6)
n + 1

4
b1 q(6)

n − 1
4

b1 q(2)
n v4

)

+h8
( 1

24
b1 q(8)

n − 13
180

v2 q(6)
n + 1

12
v2 q(6)

n b1 − 1
12

v6 q(2)
n b1 + 19

3024
v4 q(4)

n

+ 13
180

v6 q(2)
n + 997

30240
v8 qn − 1

24
v8 qn b1 − 1187

30240
q(8)

n

)
+ · · · (9)

In order the method to be of sixth order algebraic the following equation
must hold:

13
60

− 1
4

b1. (10)

Solving the system of equations (5), (7), (8) and (10) we obtain:
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a = −cos(2 v h) + 2 cos(v h) − h2 v2 cos(2 v h) b0

−h2 v2 b1 cos(v h) − 1
2

h2 v2 b2

b0 = (−60 e(3 v h) h v sin(2 v h) − 30 cos(2 v h) e(3 v h)

−30 e(4 v h) − 30 e(2 v h) + 60 cos(v h) e(3 v h)

−13 h2 v2 e(2 v h) + 15 e(5 v h) + 15 e(v h) − 13 h2 v2 e(4 v h)

+26 h2 v2 cos(v h) e(3 v h) + 60 e(3 v h) h v sin(v h) − 26 e(3 v h) h3 v3 sin(v h))/

(15 v2 h2 e(5 v h) + 15 v2 h2 e(v h) − 30 v2 h2 cos(2 v h) e(3 v h)

+60 v3 h3 e(3 v h) sin(2 v h))

b1 = 13
15

b2 = (−60 e(3 v h) cos(3 v h) + 30 e(3 v h) cos(4 v h) − 26 h3 v3 sin(2 v h) e(2 v h)

+90 e(3 v h) h v sin(v h) + 30 h v e(3 v h) sin(3 v h)

+30 e(3 v h) − 26 h2 v2 cos(v h) e(v h)

−13 h3 v3 e(3 v h) sin(3 v h) + 60 cos(2 v h) e(2 v h) + 60 e(4 v h) cos(2 v h)

−60 cos(v h) e(3 v h) + 60 h v sin(2 v h) e(5 v h) − 30 sin(v h) v h e(5 v h)

−26 h2 v2 cos(v h) e(5 v h) − 60 h v sin(2 v h) e(4 v h) − 30 cos(2 v h) e(5 v h)

−39 e(3 v h) h3 v3 sin(v h) − 60 h v sin(2 v h) e(2 v h) + 60 h v sin(2 v h) e(v h)

−30 sin(v h) v h e(v h) − 30 cos(2 v h) e(v h) − 26 h3 v3 sin(2 v h) e(4 v h)

+26 cos(2 v h) h2 v2 e(2 v h) + 26 cos(2 v h) h2 v2 e(4 v h)

+13 h3 v3 sin(v h) e(5 v h) + 13 h3 v3 sin(v h) e(v h))/(15 v2 h2 e(5 v h)

+15 v2 h2 e(v h) − 30 v2 h2 cos(2 v h) e(3 v h) + 60 v3 h3 e(3 v h) sin(2 v h)).

(11)

For small values of v the formulae given by (11) are subject to heavy can-
cellations. In this case the following Taylor series expansions should be used:

b0 = 3
40

− 19
12096

h4 v4 − 31
100800

h6 v6 + 8539
479001600

h8 v8

+ 1568477
65383718400

h10 v10 + 80060597
15692092416000

h12 v12 + · · ·

b2 = 7
60

+ 19
6048

h4 v4 + 31
50400

h6 v6 + 389573
239500800

h8 v8

+ 2367383
6538371840

h10 v10 − 117196661
7846046208000

h12 v12 + · · ·

a = 1 − 19
12096

h8 v8 − 31
50400

h10 v10 − 3637
39916800

h12 v12 + · · · (12)
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The LTE of the new method is given by:

LTE = 19 h8

6048

(
−q(8)

n + 2 v4 q(4)
n − v8 qn

)
. (13)

3. Stability of the method

We apply the new method to the scalar test equation:

y′′ = −q2 y, (14)

where q �= v. We obtain the following difference equation:

A(q, h)
(
yn+2 + yn−2

) + B(q, h)
(
yn+1 + yn−1

) + C(q, h) yn = 0, (15)

where

A(q, h) = 1 + q2 h2 b0, B(q, h) = −2 + q2 h2 b1, and C(q, h) = 2 a + q2 h2 b2. (16)

The corresponding characteristic equation is given by:

A(q, h)
(
λ4 + 1

)
+ B(q, h)

(
λ3 + λ

)
+ C(q, h) λ2 = 0. (17)

Definition 1 (see [56]). A symmetric four-step method with the characteristic
equation given by (17) is said to have an interval of periodicity

(
0, H2

0

)
if, for

all H ∈ (
0, H2

0

)
, the roots zi , i = 1, 2 satisfy

z1,2 = e±i θ(q h), |zi | ≤ 1, i = 3, 4, (18)

where θ(q h) is a real functions of q h and H = q h.

Definition 2 (see [56]). A method is called P-stable if its interval of periodicity is
equal to (0, ∞).

We have the following Theorem:

Theorem 1 (see [39]). A symmetric four-step method with the characteristic equa-
tion given by (17) is said to have an interval of periodicity

(
0, H2

0

)
if, for all H ∈(

0, H2
0

)
the following relations are hold

P1(H, w) � 0, P2(H, w) � 0, P3(H, w) � 0,

N (H, w) = P2(H, w)2 − 4 P1(H, w) P3(H, w) � 0 (19)
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Figure 1. The w – H plane for the new method.

and

P1(H, w) = 2 A(H, w) − 2 B(H, w) + C(H, w) � 0,

P2(H, w) = 12 A(H, w) − 2 C(H, w) � 0,

P3(H, w) = 2 A(H, w) + 2 B(H, w) + C(H, w) � 0,

N (H, w) = P2(H, w)2 − 4 P1(H, w) P3(H, w) � 0, (20)

where w = v h and H = q h.
In figure 1, we present the w − H plane. In figure 2 we present the stability

polynomials Pj (H, w), j = 1(1)3 in the case H = w. We note here that in the
case H = w the stability polynomial N (H, w) � 0 for H2 ∈ (0, ∞). It can be
seen from figure 2 that the interval of periodicity of the new method is (0, 9.02).

4. Numerical results – conclusion

In order to test the efficiency of the new method given by coefficients (11) and
(12) we apply them to the radial Schrödinger equation.

In order to apply the new method to the Schrödinger equation the value
of parameter v is needed. For every problem of the radial Schrödinger equation
given by (1) the parameter v is given by

v = √|q(x)| = √|V (x) − E |, (21)

where V (x) is the potential and E is the energy.



T.E. Simos / The numerical solution of the Schrödinger equation 311

Figure 2. The stability polynomials Pj (H); j = 1(1)3 for the new method in the case H = w.

For some well known potentials, such as Woods–Saxon potential, the defi-
nition of parameter v is given not as a function of x but based on some critical
points which have been defined from the study of the appropriate potential (see
for details [28]).

4.1. Woods–Saxon potential

We use as potential the well known Woods–Saxon potential given by

V (x) = u0

1 + z
− u0z

a
(
1 + z2

) (22)

with z = exp [(x − X0) /a] , u0 = −50, a = 0.6, and X0 = 7.0.
The behavior of Woods–Saxon potential is shown in figure 2.
For the purpose of obtaining our results it is appropriate to choose v as

follows (see for details [28])(figure 3):

v =






√−50 + E for x ∈ [0, 6.5 − 2h],√−37.5 + E for x = 6.5 − h,√−25 + E for x = 6.5,√−12.5 + E for x = 6.5 + h,√
E for x ∈ [6.5 + 2h, 15].

(23)
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Figure 3. The Woods–Saxon potential.

4.2. Radial Schrödinger equation - the resonance problem

Consider the numerical solution of the radial Schrödinger equation (1) in the
well-known case where the potential is the Woods–Saxon potential (22). In order
to solve this problem numerically we need to approximate the true (infinite)
interval of integration by a finite interval. For the purpose of our numerical illus-
tration we take the domain of integration as x ∈ [0, 15]. We consider equation
(1) in a rather large domain of energies, i.e. E ∈ [1, 1000].

In the case of positive energies, E = k2, the potential dies away faster than
the term l(l+1)

x2 and the Shrödinger equation effectively reduces to

y′′(x) +
(

k2 − l(l + 1)

x2

)
y(x) = 0 (24)

for x greater than some value X .
The above equation has linearly independent solutions kx jl(kx) and kxnl(kx)

where jl(kx) and nl(kx) are the spherical Bessel and Neumann functions, respec-
tively. Thus the solution of equation (1) has (when x → 0 ) the asymptotic form

y(x) 	 Akx jl(kx) − Bkxnl(kx)

	 AC

[
sin

(
kx − lπ

2

)
+ tan δl cos

(
kx − lπ

2

)]
, (25)

where δl is the phase shift that may be calculated from the formula

tan δl = y(x2)S(x1) − y(x1)S(x2)

y(x1)C(x1) − y(x2)C(x2)
(26)
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for x1 and x2 distinct points in the asymptotic region (we choose x1 as the right
hand end point of the interval of integration and x2 = x1 − h) with S(x) =
kx jl(kx) and C(x) = kxnl(kx). Since the problem is treated as an initial-value
problem, we need y0 before starting a one-step method. From the initial condi-
tion we obtain y0. With these starting values we evaluate at x1 of the asymptotic
region the phase shift δl .

For positive energies we have the so-called resonance problem. This prob-
lem consists either of finding the phase-shift δl or finding those E , for E ∈
[1, 1000], at which δl = π

2 . We actually solve the latter problem, known as the
resonance problem when the positive eigenenergies lie under the potential barrier.

The boundary conditions for this problem are:

y(0) = 0, y(x) = cos
(√

Ex
)

for large x . (27)

We compute the approximate positive eigenenergies of the Woods–Saxon
resonance problem using:

• the Numerov’s method which is indicated as Method I;

• the exponentially fitted method of Numerov type developed by Raptis
and Allison [25] which is indicated as Method II;

• the exponentially fitted four-step method developed by Raptis [40] which
is indicated as Method III;

• the two-step P-stable exponentially fitted method developed by Kalogira-
tou and Simos [42] which is indicated as Method IV;

• the four-step method mentioned in Henrici [43] which is indicated as
Method V;

• the two-step P-stable method obtained by Chawla [44] which is indicated
as Method VI

• the new P-stable trigonometrically fitted four-step method which is indi-
cated as Method VII.

The computed eigenenergies are compared with exact ones. In figure 4, we
present the maximum absolute error log10 (Err) where

Err = |Ecalculated − Eaccurate| , (28)

of the eigenenergy E3, respectively, for several values of NFEx100 =Number of
Function Evaluations.

The choice of the parameter v is based on (23).
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Figure 4. Comparison of the maximum errors Err in the computation of the resonance E3 =
989.701916 using Methods I–VI. The values of Err have been obtained based on the N F Ex100. The
absence of values of Err for some methods indicates that for these values of NFEx100 = Number of

Function Evaluations, the Err is positive.

5. Conclusions

In the present paper, we have developed an exponentially fitted four-step method
for the numerical integration of the radial Schrödinger equation. The new
method integrates exactly any linear combination of the functions

{exp (±w x) , x exp (±w x)}. (29)

We have applied the new method to the resonance problem of the radial
Schrödinger equation.

Based on the results presented above we have the following conclusions:

• The new exponentially fitted four-step method is much more efficient
than all the other methods.

• The P-stable exponentially fitted Numerov’s type method of Kalogiratou
and Simos [42] has better behavior than the Numerov’s method and the
method of Raptis and Allison [25].

• The exponentially fitted four-step method developed by Raptis [40] is bet-
ter then Numerov’s method. For number of function evaluations equal to
200 and 400 is worse than the methods of Raptis and Allison [25] and
Kalogiratou and Simos [42] but for number of function evaluations equal
to 800 and 1600 is the second best method.

• Finally, the exponentially fitted method Raptis and Allison [25] has better
behavior than the Numerov’s method.
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It is obvious that the combination of the minimization of the LT E and the
exponential fitting property develops a new direction for the construction of effi-
cient numerical methods for the solution of the Schrödinger equation and related
problems.

All computations were carried out on a IBM PC-AT compatible 80486
using double precision arithmetic with 16 significant digits accuracy (IEEE stan-
dard).
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